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A. Nersesjan and A. Roth proved the local character of the uniform meromorphic
approximation on closed sets. In this paper the technique of A. Roth, based on the
fusion lemma, is extended to BMO-norm. Thus, by reducing the approximation by
meromorphic functions in BMO-norm to rational approximation in this norm on
compact sets, the closed sets where the approximation by meromorphic functions
is possible are characterized in terms of Hausdorfl content. Sufficient conditions
for approximation by entire functions are also obtained by using the technique of
pushing poles in BMO-norm. < 1994 Academic Press, Inc.

INTRODUCTION

Let F be a relatively closed subset of the complex plane C. Denote
respectively by C(F), H(F), M (C) the set of continuous functions on F,
the holomorphic functions on a neighbourhood of F, and the meromorphic
functions in € without poles in F. If K is a compact subset of C, then R(K)
denotes the set of rational functions with poles off K. A. Nersesjan and
A. Roth proved the local character that has the uniform meromorphic
approximation on closed sets. The technique of A. Roth, based on the
fusion lemma [8], was extended to Lipx [4], and L” [1] in order to
study the meromorphic approximation on closed subsets in these norms,

In this paper we study the same problem but in BMO-norm. It is impor-
tant to observe that our results are formally similar to the ones obtained
for Lip « norms and L* norms. In fact, BMO(C) can be viewed as the
natural limit of the Lip a spaces as o — 07" thus the BMO-fusion lemma,
the localization theorem and the other results for approximation in BMO
norms on closed subsets can also be interpreted as limiting statements of
Farifia’s results.
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The paper is organized as follows. In Section 1, you will find the notation
and definitions used throughout the paper with some preliminary results.
In Section 2, we establish a version of Runge’s theorem in BMO-norm,
where it is shown that this theorem holds if we consider compact subsets
of the Riemann Sphere (C*=Cu {oc}) and if the poles of rational
approximating functions are fixed. In Section 3, the BMO-{usion lemma is
proved. As a consequence of this fusion lemma we obtain in Section 4 a
localization theorem in BMO that reduces the problem of approximating
by meromorphic functions on a closed set to an approximation by rational
functions on compact sets. Thus Verdera’s theorem [10] and Runge’s
theorem in BMO are generalized to closed, possibly unbounded, subsets of
C. The generalization of Verdera’s theorem involves the notion of one-
dimensional Hausdorff content. Recently, by using constructive methods of
localization of singularities, A. Boivin and J. Verdera [2] have proved a
similar result with M ,(C) replaced with H(F). It is important to note that
these results are actually equivalent. In fact, Runge’s theorem on closed sets
in BMO-norm states that any function of H(F) may be approximated in
BMO-norm by meromorphic functions having no poles on F. Finally, in
Section 5, by using the pole shifting method based on the BMO-Runge’s
theorem we will obtain an extension of Arakelyan’s theorem which gives
sufficient conditions to the approximation in BMO-norm by entire
functions.

1. PRELIMINARIES

Let m be the Lebesgue measure on the complex plane C. Let us fix
feLl (C). The mean oscillation of f on a disc 4 is

loc

1 .
M ) =70 [ 17() =1 dm(z),

where |4| =m(4) is the area of 4 and f,=1/|4] [ ,f(z) dm(z) is the mean
value of f on 4. We write fe BMO(C) and we say that f is of bounded
mean oscillation if

I/ Mo, c= sup M(f, 4)< o,

the supremum being taken over all discs 4. |- ||, is a (complete) seminorm
on BMO(C) vanishing only on constant functions.
For fin BMO(C) and 6 >0, set

M (0)=sup{M(f, 4): radius 4 <}.



MEROMORPHIC AND ENTIRE APPROXIMATION 205

The space VMO(C) is the set of those functions fe BMO(C) which have
vanishing mean oscillation, that is , which satifsy M (6)-0as éd—-0".
If Fis a closed subset of C, we define

BMO(F)={fi F>C:3geBMO(C),f=g,,ae.}
and, for fe BMO(F),

”f”o innf{ fgllo. c: g€ BMO(C) and g”:fa.e.}.

BMO, (F), respectively VMO (F), consists of all the functions f on
F which belong to BMO(E), respectively VMO(E), for all measurable
bounded subsets £< F.

Let

Ag(F)=VMO,(F)n H(F°).

Given a class of complex functions 4, denote by [A], , the set of all the
functions which are limits in BMO-norm on F of functions belonging to 4.
A result of P. J. Holden shows that [H(F)], pc Ag(F) [7].

A measure function is an increasing continuous function #(r), 1 >0, such
that #(0)=0. If A is a measure function and £c C we write

M"(E)=inf ¥ h(8,),
7

where the infimum is taken over all countable coverings of E by squares Q;
with sides of length d,, parallel to the coordinate axis. When #(r)=1",
B <0, M"(E)= M" is called the 8-dimensional Hausdorff content of E. The
lower one-dimensional Hausdorff content of £ is defined by

M\ (E)=sup M"(E),

the supremum being taken over all measure functions / which satisfy
h(t)<t and A(t)1 ' —0 as t— 0. The set functions M' and M were
used by Verdera to characterize the compact subsets of C for BMO
rational approximation [10].

The letter C denotes, in this paper, a positive constant independent of
the relevant variables under consideration and may be different at each
occurrence.

We close this preliminary section by recalling a few known results which
are used throughout the paper.

DEFINITION. A sequence of pairs {4,, ¢, is said to be an almost
disjoint covering of an open subset @ of the complex plane if there exists
a constant C such that
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(i) Q=U/,4,, 4, are discs with radii ;.
(i) No point of € lies in more than C discs 4,.
(iii) {@;} is a C™-partition of unity, subordinate to {4,} with
Ve, li.. <C/5;.

We say that a family {4,} of discs of C is almost disjoint if (i) and (ii)
are satisfied. Note that given an arbitrary open subset of C, Q then, accord-
ing to [3] (see also [2,6]), it is possible to find an almost disjoint
covering of €. In particular, if we consider an almost disjoint family of
discs of C one has the following lemma due to Boivin and Verdera
[2, Lemma 1.7.3], the proof of which is given here for completeness.

LemMa 1. Let {h;} be a sequence of functions h;e BMO(C) such that
the support of h, is contained in A,, where {4,} is an almost disjoint family
of discs of C; then

S,
J

Proof. Let 4 be a disc of radius r and let §; be the radius of 4;. If we
consider three subsets of N

<max o c-
0.C i

I={jid;nA+# and 4,c 24}
M={jd;nd#Z and 4)\24 # &}
M={p4,nd=3},

then we have
M(Z h,, A>< Y M(h, 4)+ Y M(h,, 4).
i jel jell

Now if jel is fixed, by using the estimation (9) of [10, p.295] with
N =r/§;, we obtain
,

J.

J

M(h, )< C( ) U Mk, 24)<C (%)2 o, e

but since 4, is an almost disjoint covering,

1
Yo=Y l<C

jel jel

U A_,.|<Cm| =Cr

jel

and then

Y. M(hy;, 4)< Cmax fihllo, e < Cm}?lx 100, -
je

jel
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To obtain the estimation 3, ,; M(A;, 4) < Cmax; {4l ¢, it is enough
to note that card(Il) is bounded by an absolute constant. Indeed, let 7 be
the boundary of 34. Since {4,} are almost disjoints and &, > r, we have

3nr=length(F)>length(U A,ml");C Y length(4,n 1)

jell jell

C Y 8, Crcard(Il).

Jell
Thus the proof of the lemma is finished.

Recall that to each ¢e Cj(C) one associates Vitushkin operator [6,
p.- 210]

T¢ loc(C)_’L(oc(C)
defined by

fﬂé) —/{z)

1 -
T,f(z) 3¢(€) am(Z)y=1(z) ¢lz)+ — J‘{ %% 0p(&) dm(<).

Moreover if 4= A(z, §) and ¢ € Cy(4), one has

ProposiTion 2 [10, Proposition 3.2]. Let fe BMO(C) and ¢ € C(4).
Then

1Ty fllo.c SCI NV 1SN0 34

The proof of this proposition contains two results that we recall in the
next lemmas.

LemMa 3. If fe BMO(C) and ¢pe CA(4), then

I fBllo.c <COIIVEL . 110, 34-

On the other hand, under the same conditions, the Cauchy transform of

04, (f0¢)", is defined by
= 1 _
(/)" &)= | SO sp(e) dmee;
e 6—' Z
thus we have

LEMMA 4. [(f20) "l c S CS8 V) . I fllo. 34
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2. RUNGE’S THEOREM IN BMO-NORMS

The fact that if fe L”(C) then ||fl, c<2|fl.. ¢ implies clearly
Runge’s theorem in BMO-norm even if we work with compact subsets
of C*:

THEOREM 5. Let K be a compact subset in C* and f be a holomorphic
Junction in a neighborhood of K. Then given £>0, there exists a rational
Sunction R(z) without poles in K such that

Il f—Rllo x<e

Proof. By Runge’s theorem in [ ||, for compact subsets of C*, there
exists a rational function R such that || f— R|, x<e/2. Denote by 4 an
extension of f— R to L™(C) such that |Al|, . <¢/2.

Since he L™(C),

liAlto, e <2 1A ¢

and we obtain
If~Rllo. x=inf{{lglo c: g€ BMO(C) and g, =fae.} <lhl, c <&

Remark. 1f ooeK and Ks#C*, then Runge’s theorem follows from
the case oc ¢ K (see for example [5, p.94]) by applying first a linear
transformation.

Note that Runge’s theorem in uniform norm allows a relocation of
the poles of the approximating rational functions without affecting the
approximation itself. It follows easily from the argument above that the
same must be true in BMO-norms; in fact we have:

THEOREM 6 (BMO-RUNGE’S THEOREM). Suppose K is a compact set in
C* and {o;} is a set which contains one point in each component of C*\K. If
[ is a holomorphic function in a neighborhood of K and £ >0 there exists a
rational function R, all of whose poles lie in the prescribed set {o;}, such that

I/~ Rlo. x<e.

3. Tue Fusion LEmMA 1N BMO-NORMS

This section also deals with approximation on compact sets. However,
the BMO-fusion lemma which we prove will be the main tool to study the
BMO-approximation on closed sets.
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THEOREM 7 (BMO-FUSION LEMMA). Suppose K, K,, and K are compact
sets in C* such that K, n K, = (. Then there exists a constant C depending
only on K| and K, with the following property: if r(, r, are rational functions
without poles in K such that

iry—raflo k<&
then there exists a third rational function r without poles in K such that
lr=rillo.xox<Ce,  i=12 (1)

Proof. f KsnK=¢ or K,n K=, then the theorem follows
immediately from Runge’s theorem in BMO. For this, suppose, for
example, that K, n K= . Define

r,(z), ze K,

Jiz)= {r;(z), zeK,UK.

Then by BMO-Runge’s theorem, there exists a rational function R such
that

ILf— Rilo, KuKiuk <&

Thus R satisfies (1), Then we may consider that K, nK# & and
K, K# (. We also remark that it is enough to consider the case r, =0,
since if r, 0, we let p, =r, —#, and p,=0. So if we assume that there
exists a rational function p such that

”P“Pl”o.xuk.<8, i=1,2,

then (1) is satisfied with r=p +r,.
Without loss of generality, we can also assume that oc € K,. We choose
open neighborhoods U, and U, of K, and K,, respectively, such that
(@) Unl,=0
(b) oU,,0U,e%".
Let E=C\(U,u U,) and note that E is a compact subset of C. Since

ri€ R(K) and {r, [, x<e, then there exists a function e BMO(C) such
that 4, =r, and

(Alle. c <2 lirllo x<2e (2)
Now we define

h(z), if zekE

/2= {r,(:), if zeC\E
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Let H be an infinitely differentiable function with compact support such
that 5, =1, H p,=0and 0< H(z)< 1, for all ze C, and set

o= [ LEELE b6y ame =10y v + g2,

where g is the Cauchy transform of f0H (ie., g=(fJ¢H)"). It follows
immediately from properties of the Vitushkin operator [6] that F is
holomorphic in X, v K, u K, except for finitely many poles in K,. Now,
suppose that 4 is a disc with radius & that contains the support of A and
G e BMO(C); then from Lemma 4

I(GEH) " [lo,c = CONIVHI . 1Gllo, 3a-
Moreover if G€ BMO(C) and G =/ a.c., then

Igho. ¢ = IfOH) " o e = INGEH) " {lo, ¢ S CE IVH . 1Gllo. 34
< CIVH| . |Gy ¢

and since || fllo, o =inf{ |Gy : Ge BMO(C) and G,.=fae.} one has
lgllo,c = I(fCH) lo.c SCSIVH] . [ fllo e < C IS llo £

with C depending only on the choice of U, and U,.
Thus, since F—r,=fH—r +g on K,0K, and H=1 on K,, we have

| F—r, HO,I(|UK: ”fHJ"g_rlHU.Klqu ”fH_rlHO.KluK‘i_ Hg”o, KiuK

= (1) + (D)
Let 4 be defined as in (2); then (I < C || flly g =C lAllo, e < C |iry o, x and
to estimate (I), note that fH—r,=(H—1)r,=(H—-1)h on KuK,, that
{H — 1) belongs to BMO(C), and that by Lemma 3

ICH = 1) hllo o < [[Hhllo c + Ihllo « SCSIIVHL L lIrillo x +2 Irillo. &

<CHrifo, &
Therefore, (1)< C |r, ||y, x and

| F—ryllo, Kluksc lriflo, k-
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Analogously, F—r,=F= Hr, + g on K implies
HF~rallo iy k= 1Fllo. igu k= I/H + gllo ook S IfHllo k0 + 18ll0, 50k
= (IIT) + (IV),
where
IVISC N fllo e=Clhllo e<Clrillo «

and to estimate (IIl), by proceeding as above, we obtain, since H=0 on
K,

”tho, cs Co |VH|| w 7y Ho, k<l “(],K-
Hence (III) < C jjr, Iy, x and
| F—ral. KwK<C 7, “0,1(-

Thus by applying the BMO-Runge’s theorem to the function F— 2 (where
2 is the sum of the principal parts of F in U,), there exists a rational
function r such that

HF_rHO.KuKluK2<C ”rXHO,K

and the theorem is proved.

4. THEOREM OF LOCALIZATION

In this section, we show that the approximation in BMO-norm on a
closed set F is equivalent to the approximation in BMO-norm on the
compact subsets of F.

THEOREM 8. Let f be a complex function on a closed subset F of C. Then
SEIMAC)Io 5. if and only if £, i, € [RIFAG,)o rrc,. where {G,} is
some exhausting sequence of C by bounded domains G, such that G, <G, , ,
and ) G,=C.

Proof. Let fe[M(C)lo ¢ Then fip.xe[R(FNK)]o rnx for each
compact subset K< C, since every function ge M ,.(C) is analytic on Fn K
and, by BMO-Runge’s theorem, can be approximated on £ K by rational
functions in BMO-norms.

Now we consider a sequence of bounded domains {G,}>_, which

n=1

640/76/2-6
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satisfies the hypotheses of theorem. For each n=1,2,.. we apply the
BMO-fusion lemma with

K1=G—ns K2=C*\Gn+l and Fn:’FmG—n+l'

We call the constant given by the fusion lemma A, and without loss of
generality assume A4, > ! and increasing.

Let &> 0, by hypothesis f|,. € [R(F,)]s ,,; hence there exists a rational
function ¢, without poles on F, such that

&
Wf~q. ”0‘ l-',,<W 3)

for every n=1, 2, .... Moreover, since F,< F,, ;, we have

&

0gns1—qnllo. F,,<'27A_- (4)

By the BMO-fusion lemma there exists a rational function r, such that

“rn——qnno,l’nulﬂ<§; (5)
and
re—q. i1 llo [-‘,,qu<—2£—,,' {6)
We define
d= 0+ T ()~ g2, (1)

n=1

and we claim that ge M (G), because [H(G,)]o ¢, < Ao(G,) [7] and
r,—q, can be chosen without poles on G, (observe the construction of F
and r in Theorem 7). Thus by (5), g has the same poles as
g (2)+ 2k <n (rd2)—gq,(2)) in G,; hence there is no acumulation of poles
in C and ge M, (C).

Finally it only remains to prove that

I f—gllo. r<e.
To do this, it suffices to show

Wf—gllo & <& n=1,2, .. (8)
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because if g,e BMO(C), g, llo.c<e and g, r=g—f then we can
consider an almost disjoint countable covering of the complex plane,
{4;, ¢;}, 4, being of radii J and define

e

Z *o(z),

where g* is equal to g, for some n such that supp ¢, = G,. Thus m =g~ f
ae., and from Lemma 1

o, o < <Cmax lgFe,llo c.

0,C

Moreover by Lemma 3

”g:(pn HO C g C5 “V(Pn “ e “g:HO C S C “g:”() [9) <&
Therefore me BMO(C),
Hmﬂo, C < CE,
and
lg—Slor<Ce
To show (8), let n=1; then by (3) and (5)
Nf—glo r,<lgy—flor+ Z Irn—agullo # <e.
n=1
On the other hand, if n> 1 we have

n-1 o
Wf—gllo r, < Z lre —gesillom+ 1ge—Flo g+ Z V70— qullo, £,

k=1 k=n

< (1) + (1) + (1),

Since for 1 <k<n—1, F,c(C*\G,, )V Fy,

n-1

(D= Z Ire— e o s < Z 2A’

A=1 k=1

by (3)

&
(II): "QM —f]lﬂ f},g-i—n-;—l-’
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and for k>n, F,c F, UG, and by (5)

< .
mn< 'y 7
k=n

Thus
Wf—gllo r, <&
and so the theorem is proved.

As a first application of this theorem we obtain the next corollary, which
is a BMO-Runge’s theorem for arbitrary closed subsets of C.

COROLLARY 9. Let F be a closed subset of C and fe H(F). Then f can be
approximated in BMO-norm by functions in M (C).

Proof. Let G,=4(0,n). Since F is a closed and fe H(F), we have
Je H(FNG,) for all n=1,2, ... Hence, fe [R(FNG,)]o rnc, and from
Theorem 8 we infer that fe [M,(C)],

The localization theorem also allows us to extend Verdera’s theorem
{10, Theorem 27 on the approximation of functions in 4,(X) by functions
in R(X), when X is a compact subset of C, to meromorphic approximation
on arbitrary closed subsets of C.

THeEOREM 10. Let F be a closed subset of C. The following conditions are
equivalent:

(i) Ao(F)=[MC)lo r
(i) M (A(z, S\F°) < CM (A(z, S)\F), for all z and all open disc 4.

Proof. The proof of (i)= (ii) is analogous to the compact case [10,
Section 37]. To prove (ii)=> (i), let {G,} be an exhausing sequence of C by
discs G, such that G, G, , , and | G, = C. According to Theorem 4, it is
enough to show that

AO(F(\ Gn) = [R(Fﬂ G_n)](). FnG,
and in virtue of [10, Theorem 27, this is equivalent to prove
M (4(z, S\N(FG,)°) < CM (A(z, O\(FG,)).

Denote Fn G, by X, and note that it follows from elementary properties
of M, that

MMA(z, NX°) < M NA(z, \X) + M LAz, 8) m aX) = (1),
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Also recall that M, and M' agree on open sets and observe that
0X n A(z, 8) is contained in (éF A(z, 8))u (6G,), A(z, ONF< 4(z, SNNX
and that M [(0G,)=0; so we obtain

(N S MYA(z, S\NX) + M [(A(z, 6) N 6F) + M (3G,,)
S M (A(z, S\NX)+ M [(A(z, )\ F°)= (II).
Now by using (ii),
(I <M '(A(z, ONX) + CM '(A(z, O)\F)
<M Az, ONX)+ CM ' (A(z, O\ X)
S(C+1) M'(4(z, 0)N\X);
thus
MY A(z, (FG)°)<(C+ 1) MY (A(z, )\ (FNG,)).

COROLLARY 11. Let F be a closed nowhere dense subset of C. Then
C(F)c [M,(C)]o - if and only if there exists a constant C >0 such that

M"Y (A(z, O\NF)= C 9)
Jor all z and all d.

Proof. Let fe C(F). If M'(A(z, S)\F)= CS and {D,} is an exhaustion
of C by open discs with D,=D,,,, then M (A(z, O \NFnD,)> C3.
Moreover by virtue of [10, Corollary of Theorem 2], fe R(Fn D,) because
fe C(Fn D,). Hence by applying Theorem 10, fe [M,(C)]q -

Conversely, let feVMO,(F) and {D,} as above. Then
fe VMO(Fn D,). Since C(X) is dense in VMO(X) provided that X is a
compact subset of C [97, for £> 0 there exists a function ge C(Fn D,)
such that

1/ —gllo. rnp, <2

But, according to well-known extension theorems, g can be extend to
g*¥e C(F). So by hypothesis g*e[M (C)], » and by applying BMO-
Runge’s theorem there exists a rational function r without poles on F~ D,
such that

g —rlo, rrp, <82

Therefore fe [R(IFND,)]o rnp, and fe [M(C)]o , (Theorem 8). Now
(9) follows from Theorem 10.
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5. ENTIRE APPROXIMATION IN BMO-NORMS

With BMO-Runge’s theorem we have seen that it can be advantageous
to recolocate the poles of the approximating rational function without
affecting the approximation itself. It is important for us that an analogous
result holds for meromorphic functions. In order to prove a pole shifting
theorem, we need the following lemma whose proof is similar to Lip « case,
when considering the BMO-norm instead of Lip a-norm [4].

LEMMA 12. Let F be a closed subset of C and fe M (C). Suppose that
f has a pole at z, e C\F. If ¢>0 and z,€ C\F with z, and z, being in the
same connected component of C\F, then there exists a function ge M (C)
such that:

(a) g has a pole at z,.

(b) g is holomorphic at z,.

(¢) If z is a pole of g and z5z,, for i=1,2, then z is also a pole
of f.

(d) I/—glo r<e

Since, obviously, a relocation of infinitely many poles is required, it is
essential that C*\F be locally connected, thus we obtain:

THEOREM 13.  Let F be a closed subset in C, C*\F being locally connected.
Then for every fe M (C) and £ >0 there exists a rational function r and an
entire function h such that

1 f=r—hlo r<e

If C*\F is connected, we can choose r=0.

Proof. All the poles of f can be connected with {oc} by arcs contained
in C\ F except at most a finite number of them. Moreover, according to [5,
p. 138 ff.], we can choose the arcs y, such that if K is a compact subset of
C, then K intersects at most a finite number of these arcs.

Let {G,;ne N} be an exhausting sequence of C by precompact domains
with G, =G, ,. Denote r the sum of the singular parts of f'in the poles of
flying in the bounded components of C*\F, and g = f— r. Since there only
exists a finite number of y, intersecting G, then we can displace the corre-
sponding poles along these arcs out of G, (Lemma 12). So there exists a

g1€ M, (C) such that

lg~gllo r<e/2
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and all the poles of g, can be connected to {ov] by arcs y, < C\F which
do not intersect G,. By a recurrent procedure, it is shown that there exists
a function g, € M ,(C) such that

Ilgn—gn~1”0,FuG,,,1<8/2" (10)

and all the poles of g, can be connected to {0} by arcs which do not
intersect G, F.
We define the function A=1lim g,. Thus 4 is entire in G, because

ac

h= lim £, =8~ Z (gn+l’_gn)

n— n=~N

and g, is analytic in G, for every n 2 N. By (10) the series converges in
BMO-norm on G, and 3., (g,.1—&,) belongs to A4,(Gy) [7]; hence
he H(G,) for each n. Moreover

fmr—hlor<lgy—glosrt Y Ign—gn ilor<e

n=2

If C*\F is connected, then r=0.

Thus we may extend Arakeljan’s theorem (see [5, p. 142] for the
uniform approximation) to BMO-norm, by obtaining sufficient conditions
for the entire approximation

THEOREM 14. Let F be a closed subset of C. If C*\F is connected and
locally connected and

M (A(z, S\F°) < CM '(A(z, )\F)

for all z and all 6 >0, then all fe Ay(F) can be approximated in BMO-norm
by entire functions.

Proof. The proof is deduced form Theorem 10 and Theorem 13.

Note that the conditions of the above theorem are not necessary, since
sets with measure 0 are ignored by BMO-norm. Thus we can construct a
closed set Fsuch that F\F,, F, being a measurable set with measure 0, has
its complement (C*\(F\F,)) connected and locally connected, although
C*\F is not connected and locally connected.
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