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A. Nersesjan and A. Roth proved the local character of the uniform meromorphic
approximation on closed sets. In this paper the technique of A. Roth, based on the
fusion lemma, is extended to BMO-norm. Thus, by reducing the approximation by
meromorphic functions in BMO-norm to rational approximation in this norm on
compact sets, the closed sets where the approximation by meromorphic functions
is possible are characterized in terms of Hausdorff content. Sufficient conditions
for approximation by entire functions are also obtained by using the technique of
pushing poles in BMO-norm. ·e, 1994 Academic Press. Inc.

INTRODUCTION

Let F be a relatively closed subset of the complex plane C. Denote
respectively by C(F), H(F), M,dC) the set of continuous functions on F,
the holomorphic functions on a neighbourhood of F, and the meromorphic
functions in C without poles in F. If K is a compact subset of C, then R(K)
denotes the set of rational functions with poles off K. A. Nersesjan and
A. Roth proved the local character that has the uniform meromorphic
approximation on closed sets. The technique of A. Roth, based on the
fusion lemma [8], was extended to Lip ~ [4], and LP [1] in order to
study the meromorphic approximation on closed subsets in these norms.

In this paper we study the same problem but in BMO-norm. It is impor
tant'to observe that our results are formally similar to the ones obtained
for Lip IX norms and LP norms. In fact, BMO(C) can be viewed as the
natural limit of the Lip a spaces as IY. - 0 +; thus the BMO-fusion lemma,
the localization theorem and the other results for approximation in BMO
norms on closed subsets can also be interpreted as limiting statements of
Farina's results.
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The paper is organized as follows. In Section 1, you will find the notation
and definitions used throughout the paper with some preliminary results.
In Section 2, we establish a version of Runge's theorem in BMO-norm,
where it is shown that this theorem holds if we consider compact subsets
of the Riemann Sphere (C* = C v {w}) and if the poles of rational
approximating functions are fixed. In Section 3, the BMO-fusion lemma is
proved. As a consequence of this fusion lemma we obtain in Section 4 a
localization theorem in BMO that reduces the problem of approximating
by meromorphic functions on a closed set to an approximation by rational
functions on compact sets. Thus Verdera's theorem [10J and Runge's
theorem in BMO are generalized to closed, possibly unbounded, subsets of
Co The generalization of Verdera's theorem involves the notion of one
dimensional Hausdorff content. Recently, by using constructive methods of
localization of singularities, A. Boivin and J. Verdera [2J have proved a
similar result with M}.(C) replaced with H(F). It is important to note that
these results are actually equivalent. In fact, Runge's theorem on closed sets
in BMO-norm states that any function of H(F) may be approximated in
BMO-norm by meromorphic functions having no poles on F. Finally, in
Section 5, by using the pole shifting method based on the BMO-Runge's
theorem we will obtain an extension of Arakelyan's theorem which gives
sufficient conditions to the approximation in BMO-norm by entire
functions.

1. PRELIMINARIES

Let m be the Lebesgue measure on the complex plane C. Let us fix
fE LioC<c). The mean oscillation off on a disc Ll is

1 f .M(f,Ll)=Gj If(z)-f"ldm(z),

where ILlI =m(Ll) is the area of Ll andfJ = IliA/ J.J(z)dm(z) is the mean
value of f on A. We write fE BMO(C) and we say that f is of bounded
mean oscillation if

Ilfllo c = sup M(f, A) < w,
. J

the supremum being taken over all discs Ll. II ·110 is a (complete) seminorm
on BMO(C) vanishing only on constant functions.

For fin BMO(C) and 15>0, set

Mr(b) = sup{M(f, ,1): radius A:<:; b}.
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The space VMO(C) is the set of those functions IE BMO(C) which have
vanishing mean oscillation, that is , which satifsy Mf ( ()) -> 0 as () -> 0 + .

If F is a closed subset of C, we define

BMO(F) = {J: F -> C::I gE BMO(C),j=gIFa.e.}

and, for IE BMO(F),

II/IIo-F= inf{ Ilgllo, c: gE BMO(C) and gl F=I a.e.}.

BMO'oc(F), respectively VMO'oc(F), consists of all the functions f on
F which belong to BMO(E), respectively VMO(E), for all measurable
bounded subsets E c F.

Let

Given a class of complex functions A, denote by [AJo. F the set of all the
functions which are limits in BMO-norm on F of functions belonging to A.
A result of P. J. Holden shows that [H(F)Jo-F c Ao(F) [7].

A measure function is an increasing continuous function h( t), t ~ 0, such
that h(O) = O. If h is a measure function and E c C we write

Mh(E) = infI h()j)'
j

where the infimum is taken over all countable coverings of E by squares Qi
with sides of length ()j' parallel to the coordinate axis. When h(t) = (Ii,

fJ < 0, Mh(E) = M'l is called the fJ-dimensional Hausdorff content of E. The
lower one-dimensional Hausdorff content of E is defined by

M ~(E) = sup Mh(E),

the supremum being taken over all measure functions h which satisfy
h( () ~ t and h( () {- 1 -> 0 as {-> 0 +. The set functions M 1 and M ~ were
used by Verdera to characterize the compact subsets of C for BMO
rational approximation [10].

The letter C denotes, in this paper, a positive constant independent of
the relevant variables under consideration and may be different at each
occurrence.

We close this preliminary section by recalling a few known results which
are used throughout the paper.

DEFINITION. A sequence of pairs {.1 j , <Pi} is said to be an almost
disjoint covering of an open subset Q of the complex plane if there exists
a constant C such that
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(i) Q = U;~ I .1 j , .1 j are discs with radii iSj .

(ii) No point of Q lies in more than C discs .1 j .

(iii) {qJ;} is a eX-partition of unity, subordinate to {.1 j } with
IIV'qJjIICfC < C/i5j •

We say that a family {.1J of discs of C is almost disjoint if (i) and (ii)
are satisfied. Note that given an arbitrary open subset of C, Q then, accord
ing to [3] (see also [2,6]), it is possible to find an almost disjoint
covering of Q. In particular, if we consider an almost disjoint family of
discs of C one has the following lemma due to Boivin and Verdera
[2, Lemma 1.7.3], the proof of which is given here for completeness.

LEMMA 1. Let {hj} be a sequence of functions hiE BMO(C) such that
the support of h; is contained in .1 j , where {.1 j } is an almost disjoint family
of discs of C; then

ii
I hjll ~ max Ilhjll o, c·

I 0, C ;

Proof Let.1 be a disc of radius r and let bj be the radius of .1j. If we
consider three subsets of N

I = {j: .1 j n .1 =I- 0 and .1 j C 2.1 }

II = {j: .1 j n ,1 =I- 0 and .1 ;\2,1 =I- 0}

III = {j: .1 j n ,1 = 0 },

then we have

M (~hj' .1 ) ~j~I M(hj,.1) + j~I M(hj , .d).

Now if JEI is fixed, by using the estimation (9) of [10, p.295] with
N = rlbj , we obtain

M(hj , .d) ~ C (~)2 M(hj , 2.1 j )~ C (~r Ilhjll o. c,

but since .1j is an almost disjoint covering,

and then

L M(hj,.1)~Cmax Illljllo.c~Cmax Illljllo,c'
iEf jE[ )
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To obtain the estimation LjEIIM(hj,A):::;Cmaxjllhjllo.c, it is enough
to note that card(lI) is bounded by an absolute constant. Indeed, let r be
the boundary of ~A. Since {A j } are almost disjoints and bj ~ r, we have

3nr = length(T) > length (U Aj n r) ~ C L length(Aj n T)
jell jEll

~ C L: bj ~ Cr card(lI).
jEll

Thus the proof of the lemma is finished.

Recall that to each ¢>E Cci(C) one associates Vitushkin operator [6,
p.21O]

defined by

1f f(O-f(z) - • 1f f«() -
Tq,f(z) =- • a¢>(<;) dm(O =f(z) ¢>(z)+ - - iJt/J«() dm«().

IT c (-Z IT c(-Z

Moreover if A = A (z, c5) and tP E Cci(A), one has

PROPOSITION 2 [10, Proposition 3.2]. Let f E BMO(C) and t/J E C ci (A).
Then

II Tq,fllo. c:::; Cc5 IIVt/Jllx. Il.fllo. 3,1'

The proof of this proposition contains two results that we recall in the
next lemmas.

LEMMA 3. IffEBMO(C) and¢>ECci(A), then

Ilft/Jilo. c:::; Cb IIVt/J1I oc IIfllo.3,1·

On the other hand, under the same conditions, the Cauchy transform of
flt/J, (flt/J) A, is defined by

- 1f f(() -
(fOl/J)A (z)=; c'(_ziJl/J(Odm(O;

thus we have

LEMMA 4. lI(flt/J)A/lo.c~Cb IIVl/Jllx /lIllo.3j·
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2. RUNGE'S THEOREM IN BMO-NORMS

The fact that if IE Lf~(C) then Illll o. c ~ 2 IIIII:L. c implies clearly
Runge's theorem in BMO-norm even if we work with compact subsets
of C*:

THEOREM 5. Let K be a compact subset in C* andl be a holomorphic
function in a neighhorhood of K. Then given E > 0, there exists a rational
function R(z) without poles in K such that

Ilf- RII n. K < E.

Proof By Runge's theorem in 11·11:.< for compact subsets of C*, there
exists a rational function R such that IIf- Rllx. K < e/2. Denote by h an
extension off - R to Lf(C) such that Ilhll,. c < e/2.

Since hE C"'(C),

IIhll o, c ~ 2 Ilhll f. r

and we obtain

III- Rllo. K= inf{ II gllo. c: g E BMO(C) and glK =f a.e.} ~ Ilhll o.c< e.

Remark. If 00 E K and K =I- C*, then Runge's theorem follows from
the case '00 ¢; K (see for example [5, p. 94]) by applying first a linear
transformation.

Note that Runge's theorem in uniform norm allows a relocation of
the poles of the approximating rational functions without affecting the
approximation itself. It follows easily from the argument above that the
same must be true in BMO-norms; in fact we have:

THEOREM 6 (BMO-RuNGE'S THEOREM). Suppose K is a compact set in
iC* and {aJ is a set which contains one point in each component of iC* \K. If
f is a holomorphic Iunction in a neighborhood of K and [; > 0 there exists a
rational function R, all of whose poles lie in the prescribed set {aj }, such that

II I - R II o. K < e.

3. THE FUSION LEMMA IN BMO-NORMS

This section also deals with approximation on compact sets. However,
the BMO-fusion lemma which we prove will be the main tool to study the
BMO-approximation on closed sets.
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THEOREM 7 (BMO-FUSION LEMMA). Suppose Kj> K 2 , and K are compact
sets in iC* such that K j n K 2 = 0. Then there exists a constant C depending
only on K 1 and K 2 with the following property: if r l' r2 are rational functions
without poles in K such that

then there exists a third rational function r without poles in K such that

i= 1, 2. (1)

Proof If K) n K = 0 or K2 n K = 0, then the theorem follows
immediately from Runge's theorem in HMO. For this, suppose, for
example, that KI n K = 0. Define

ZEK I

zEK2 uK.

Then by BMO-Runge's theorem, there exists a rational function R such
that

Ilf- Rllo. Ku K, uK) < e.

Thus R satisfies (1). Then we may consider that K[ n K =I 0 and
K 2 n K =I- 0. We also remark that it is enough to consider the case r 2 == 0,
since if r2 t: 0, we let PI = r[ - r2 and P2 == 0. So jf we assume that there
exists a rational function P such that

lip - Pilio. Ku K, < e, i= 1, 2,

then (l) is satisfied with r = p + r2'

Without loss of generality, we can also assume that OC; E K2 . We choose
open neighborhoods U I and U 2 of K[ and K 2 , respectively, such that

(a) U) n U 2 = 0
(b) aUt, iJU2 ECfil.

Let E = iC\( U I u U2 ) and note that E is a compact subset of iC. Since
rjER(K) and IIrll!o.K<e, then there exists a function hEBMO(iC) such
that h II( = r l and

Now we define

(2)

f(z)={h(Z),
r)(z),

if ZE E

if Z E iC\E.
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Let H be an infinitely differentiable function with compact support such
that H'Ol= 1, H 102 =O and O~H(z)~ 1, for all ZEt[:, and set

F(Z)=~f f(~)-f(z) 8H(() dm(O=f(z) H(z)+g(z),
n c ~-z

where g is the Cauchy transform of faH (i.e., g = uaH) A). It follows
immediately from properties of the Vitushkin operator [6] that F is
holomorphic in K[ u K 2 U K, except for finitely many poles in K I . Now,
suppose that A is a disc with radius 1> that contains the support of Hand
G E BMO(C); then from Lemma 4

II (GaH) "- 110. c = Cb IIVHllx II Gil O. 3A'

Moreover if GEBMO(C) and G(E=fa.e., then

Ilgllo. c = IIU8H) A 110. c= II(G8H)"- 110. c~ C1> IIVHlloc IIGllo.3A

~ Cb IIVHllx IIGllo. (;

and since Ilfllo.H=inf{IIGllo.c:GEBMO(iC) and G1E=fa.e.} one has

Ilgllo. c = IIU3H) A 110. C ~ Cb IIVHllx Ilflio. £~ C Ilfllo. £'

with C depending only on the choice of Uland U2'

Thus, since F - 1'1 =fH - 1'1 +g on K I U K, and H == I on K l' we have

=(1)+(11)

Let h be defined as in (2); then (II)~C Ilfllo.£=C IIhllo.£~C Ilrjll o. K and
to estimate (1), note thatjH-r1=(H-I)r1=(H-l)h on KuK1 , that
(H - 1) belongs to BMO(C), and that by Lemma 3

II(H -1) hllo. c~ IIHhll o.c + Ilhll o. C ~ C1> IIVHllx. 111'1110. K + 2111'1110. K

~ C IIf[ 110. K'

Therefore, (I) ~ C II I' I 110. K and
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Analogously, F - r2 = F= Hr, + g on K implies

211

IIF-r2I1o,K2uK= IIFllo,K2uK= IlfH+gllo,K2uK~ IIfHllo,K2uK+ IIgIl0,K2uK

= (Ill) + (IV),

where

(IV) ~ c IIfllo, E= c Ilhll o,E~ C IIr 1 110, K

and to estimate (III), by proceeding as above, we obtain, since H == 0 on
K2 ,

Hence (III) ~ C IIr) 110, K and

IIF - r2 110, K2 U K ~ C Ilr 1 110, K'

Thus by applying the BMO-Runge's theorem to the function F - I (where
I is the sum of the principal parts of F in U1), there exists a rational
function r such that

IIF - rll o.Ku K, u K2 < C Ilrlll o,K

and the theorem is proved.

4. THEOREM OF LOCALIZAnON

In this section, we show that the approximation in BMO-norm on a
closed set F is equivalent to the approximation in BMO-norm on the
compact subsets of F.

THEOREM 8. Let f be a complex function on a closed subset F of C, Then
fE[MF(C)]O,F' if and only iff'FnC.E[R(FnGn)]o,FnC.' 'A'here {Gn} is
some exhausting sequence of C by bounded domains Gn such that GneGn + )

and UGn=c'

Proof Let fE[MF(C)]O,F' Then fIFnKE[R(FnK)]O,FnK for each
compact subset KcC, since every function gEMF(C) is analytic on FnK
and, by BMO-Runge's theorem, can be approximated on F n K by rational
functions in BMO-norms.

Now we consider a sequence of bounded domains {Gn}:'= 1 which

640/76/2-6
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satisfies the hypotheses of theorem. For each n = 1, 2, ... we apply the
BMO-fusion lemma with

and

We call the constant given by the fusion lemma An and without loss of
generality assume All ~ 1 and increasing.

Let £>0, by hypothesis/\J,,,E [R(FII)](),t~; hence there exists a rational
function qll without poles on F" such that

e
111- qII II 0. l;, < 211 + I A

II

for every n = 1, 2, .... Moreover, since F" c F/I + I, we have

(3)

(4 )

By the BMO-fusion lemma there exists a rational function, II such that

and

We define

e
11'11 - qllllo, l~uKI < 2/1

£
II r11 - q /I + I II 0, l~ u K2 < 211 '

n=J

(5)

(6)

(7)

and we claim that gEMF(G), because [H(G/I)]o.c"cAo(G/I) [7] and
'11 - q/l can be chosen without poles on Gil (observe the construction of F
and r in Theorem 7). Thus by (5), g has the same poles as
ql(z) +Lk<1I ('II(Z) -q/l(z)) in Gn ; hence there is no acumulation of poles
in C and gE MF(iC).

Finally it only remains to prove that

11/- gllo, F< £.

To do this, it suffices to show

11/-gil 0, l~ < £, n = 1, 2, ... (8)
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because if g"EBMO(C), Ilg"lIo.c<e, and g,1\Fn =g-j, then we can
consider an almost disjoint countable covering of the complex plane,
{A j , <,oJ, Aj being of radii 0 and define

x

m(z) = L gl<,oj(z),
i= I

where gl is equal to g" for some n such that supp <,oj c G". Thus m I I' = g - f
a.e., and from Lemma 1

Moreover by Lemma 3

Therefore mE BMO(C),

II m llo. c:S;:; Ce,

and

II g-fllo. F:S;:; Ceo

To show (8), let n = 1; then by (3) and (5)

x

lif- gllo. F,:S;:; I[ql - fllo, 1', + L Ilr" - q" 110. 1', < e.
11=1

On the other hand, if n> 1 we have

n - I Cf_

Ilf-gllo,f~:S;:; L IIrl;-qk+IIIO,f~+llq,,-fIIOJn+ L Ilr"-q,,lIo,f~
1;-1 1;-"

:s;:; (I) + (II) + (III).

Since for 1~ k:s;:; n-I, F" c (1[*\Gk + d u F"

" I ,,- I e
(I) = L II rk - qk+ I 11O,f~:S;:; L 2"

1;=1 k~1

by (3)
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and for k ~ n, F" c Fk U Gk and by (5)

x e
(III) ~ I 2k '

k=n

Thus

IIf- gllo. Fn < e,

and so the theorem is proved.

As a first application of this theorem we obtain the next corollary, which
is a BMO-Runge's theorem for arbitrary closed subsets of C.

COROLLARY 9. Let F be a closed subset ofC andfE H(F). Thenf can be
approximated in BMO-norm by functions in M 1'(C),

Proof. Let Gil = d(O, n). Since F is a closed and fE H(F), we have
fEH(FnG,,) for alln=1,2, .... Hence,fE[R(FnGII)]O.1'nGn' and from
Theorem 8 we infer that fE [M1'(C )]0. F'

The localization theorem also allows us to extend Verdera's theorem
[10, Theorem 2] on the approximation of functions in Ao(X) by functions
in R(X), when X is a compact subset of C, to meromorphic approximation
on arbitrary closed subsets of e.

THEOREM 10. Let F be a closed subset ofe. The following conditions are
equivalent:

(i) Ao(F) = [MAC)]o,F

(ii) M ~(d(z, b)\Fo)~ CM1(d(z, b)\F),for all z and all open disc d.

Proof. The proof of (i):=> (ii) is analogous to the compact case [10,
Section 3]. To prove (ii) = (i), let {Gil} be an exhausing sequence of C by
discs Gn such that GneG II + 1 and U Gil = C. According to Theorem 4, it is
enough to show that

Ao(Fn Gn ) = [R(Fn GII)]o, FnGn

and in virtue of [10, Theorem 2], this is equivalent to prove

Denote F n G" by X, and note that it follows from elementary properties
of M ~ that
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Also recall that M ~ and M I agree on open sets and observe that
ax n .1(z, b) is contained in (oF n .1(z, b)) U (oG/l), .1(z, b)\F c .1(z, b)\X
and that M ~(oG/l) = 0; so we obtain

(I)';;;M1(.1(z, b)\X)+M~(.1(z,b)noF)+M~(aG/l)

,;;; M1(.1(z, b)\X) + M ~(.1(z, b)\Fo)= (II).

Now by using (ii),

(II)';;; M 1(.1(Z, b)\X) + CM 1(.1(Z, b)\F)

,;;; M1(.1(z, b)\X) + CM1(.1(z, b)\X)

,;;; (C + 1) M1(.1(z, (5)\X);

thus

M ~(.1(z, (5)\(Fn G/l)o),;;; (C + I) M 1(.1(Z, (5)\(Fn G/l))'

COROLLARY II. Let F be a closed nowhere dense subset of C. Then
C(F) c [MAC )]0." if and only if there exists a constant C> 0 such that

(9)

for all z and all b.

Proof Let fE C(F). If Ml(.1(Z,(5)\F)~C(5and {D/l} is an exhaustion
of C by open discs with f5/lCD/l~l' then MI(.1(z,(5)\Fn15/l)~CD.

Moreover by virtue of [10, Corollary of Theorem 2],fE R(Fn 15/l) because
f E C(F n 15/l)' Hence by applying Theorem 10, fE [Mr( C)] 0. [..

Conversely, let fE VM01oc(F) and {D/l} as above. Then
fE VMO(Fn 15/l)' Since C(X) is dense in VMO(X) provided that X is a
compact subset of C [9], for £>0 there exists a function gE C(Fn15/l)
such that

IIf- gilD. Fn15. < £/2.

But, according to well-known extension theorems, g can be extend to
g*EC(F). So by hypothesis g*E[M,,(C)]o,F and by applying BMO
Runge's theorem there exists a rational function r without poles on F n 15/l
such that

II g - rllo. Fn 15. < £/2.

Therefore fE [R(Fn15/l)]o,FnD. and fE [M[.(C)]o,F (Theorem 8). Now
(9) follows from Theorem 10.
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5. ENTIRE ApPROXIMATION IN BMO-NORMS

With BMO-Runge's theorem we have seen that it can be advantageous
to recolocate the poles of the approximating rational function without
affecting the approximation itself. It is important for us that an analogous
result holds for meromorphic functions. In order to prove a pole shifting
theorem, we need the following lemma whose proof is similar to Lip ex case,
when considering the BMO-norm instead of Lip (X-norm [4].

LEMMA 12. Let F he a closed suhset ofC andfEMr(C). Suppose that
f has a pole at 2 IE C\F. If E > 0 and 22 E C\F \vith 2 I and 22 heing in the
same connected component of C\F, then there exists a jimction gEMr( C)
such that:

(a) g has a pole at 22'

(b) g is holomorphic at Z I'

(c) 1/ Z is a pole of g and 2 # Z I , for i = I, 2, then 2 is also a pole
off

(d) IIf-gllo,F<E.

Since, obviously, a relocation of infinitely many poles is required, it is
essential that C *\F be locally connected, thus we obtain:

THEOREM 13. Let F be a closed subset in C, C*\F heing locally connected.
Then for every fE M1.(C) and E > 0 there exists a rational function r and an
entire function h such that

Ilf- r - hila, 1'< E.

If C*\F is connected, we can choose r == O.

Proof All the poles off can be connected with {x} by arcs contained
in C\F except at most a finite number of them. Moreover, according to [5,
p. 138 ff.], we can choose the arcs')' k such that if K is a compact subset of
C, then K intersects at most a finite number of these arcs.

Let {Gil; n E N} be an exhausting sequence of C by precompact domains
with G" c G" + I' Denote r the sum of the singular parts off in the poles of
f lying in the bounded components of C*\F, and g =f - r. Since there only
exists a finite number of '}' II intersecting GI then we can displace the corre
sponding poles along these arcs out of GI (Lemma 12). So there exists a
gl EMFvG,(C) such that

II g I - gila. 1 < el2
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and all the poles of g I can be connected to {OCJ} by arcs I'k c C\F which
do not intersect G1 . By a recurrent procedure, it is shown that there exists
a function gn E M Fu eJC) such that

(10)

and all the poles of gn can be connected to {OCJ} by arcs which do not
intersect Gn v F.

We define the function h= lim gIl' Thus h is entire in G, because

CX)

h = lim gn=g N+ L: (gn+ I - g,,)
n _ cc

n= N

and gn is analytic in GN for every n ~ N. By (10) the series converges in
BMO-norm on GN and L:~N(gn+l-gn) belongs to AO(GN) [7]; hence
hE H(Gn) for each n. Moreover

"C'

'If-r-hllo,F~Ilgj-gllo,F+ L Ilg,,-g"-lllo.F~f,·
,,~2

If C*\F is connected, then r == 0.

Thus we may extend Arakeljan's theorem (see [5, p. 142J for the
uniform approximation) to BMO-norm, by obtaining sufficient conditions
for the entire approximation

THEOREM 14. Let F be a closed subset of C. If C*\F is connected and
locally connected and

for all z and alll> > 0, then all fE Ao(F) can be approximated in BMO-norm
by entire functions.

Proof The proof is deduced form Theorem 10 and Theorem 13.

Note that the conditions of the above theorem are not necessary, since
sets with measure 0 are ignored by BMO-norm. Thus we can construct a
closed set F such that F\F I' F 1 being a measurable set with measure 0, has
its complement (C*\(F\F1» connected and locally connected, although
C*\F is not connected and locally connected.
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